欢迎光临

原子时 当两种原子在一起时会发生什么

磁场交换作用。

两个原子的磁效应。

第一种是电子自旋共振:一种提供了非常详细的弱相互作用测量技术。

第二种方法是使用非弹性电子隧穿光谱法,它在测量较强的相互作用时给出了更好的结果。

使用两种测量方法使研究人员在匹配时对结果更有信心,这一过程使研究人员在测量交换相互作用方面达到了一个新的精度水平。

还演示了一种调整原子磁场的可能技术,这种技术在未来的数据存储设备中会很实用。

将自旋电子器件缩小到纳米尺度最终需要对单个原子磁矩进行局域控制。

在这些长度尺度上,交换相互作用起着重要作用,如自旋量子化轴的稳定、自旋挫折的产生和磁序的产生。

原子时

中文名原子时

外文名international atomic time

所处时代二十世纪

开放时间1958年1月1日

英文名international atomic time

计量单位原子时秒

起点1958年1月1日0时0分0秒(UT)

原理量子物理学的基本原理

历史沿革早期原子时间尺度由石英时钟组成,频率由单个原子钟校准:原子钟不是连续运转的。原子计时服务于1955年在英国国家物理实验室(NPL)的第一个铯原子钟开始实验。格林尼治原子(GA)的规模始于1955年的皇家格林威治天文台。1955年7月,国际时间局(BIH)开始使用当地的铯钟,并使用VLF无线电信号的相位对遥远的时钟进行比较。美国海军天文台开始了A。1956年9月13日,使用原子时的商业原子钟,紧随其后的是国家标准局,位于科罗拉多州的博尔德。BIH量表和A。1被定义为1958年年初的一个时代:它被设定为在相应的UT2时刻阅读朱利安日期24362045(1958年1月1日00:00:00)。BIH所使用的程序演变了,时间尺度的名称也改变了1963年的A3和TA(BIH)在1969年。1991-2001年,这种同步不可避免地是不完美的,这取决于它在UT2的天文学上的实现。当时,由不同的观测站所发布的UT2不同于百分之几秒。

SI秒的定义是1967年的铯原子,1971年,国际原子时(TAI)被分配到一个基于SI秒的时间尺度,没有闰秒。[7在这段时间内,检测并纠正了原子时间的不规则性。1967年,有人建议,附近的群众会导致时钟以不同的速度运行,但这在1968年被证明是不可靠的。

在20世纪70年代,由于重力时间的膨胀,参与TAI的时钟在不同的速度下滴答作响,因此,结合的TAI刻度与不同时钟的平均高度对应。从JulianDate24431445(1977年1月1日00:00:00)开始,校正应用于所有参与时钟的输出,因此TAI将对应于平均海平面(geoid)的适当时间。因为时钟的平均水平远高于海平面,这意味着TAI放慢了速度,大约是1万亿分之一。前未改正的时间尺度继续以EAL(即自由原子尺度)的名义发表。

重力校正开始被应用的瞬间是一个以重心坐标时间(TCB)、地心坐标时间(TCG)和地球时间(TT)的时代,它代表了太阳系的三个基本时间尺度。这三种时间尺度都被定义为在这一时刻阅读JD24431445003725(1977年1月1日00:32184)。(偏移量是提供与旧的星历时间的连续性。)从此以后,泰就变成了TT,方程TT(TAI)=TAI+32184s。

TAI的持续存在在2007年的一封由BIPM到itu-r的信中被质疑,如果没有闰秒重新定义UTC,CCTF将考虑讨论压制TAI的可能性,因为它将与持续UTC保持平行。

UTC是一个不连续的(即定期调整闰秒)的时间尺度,由原子时间的线性变换组成。从1961年到1971年12月,在分秒闰秒内定期进行调整,使UTC接近UT2。后来这些调整只在一秒钟内完成,以接近UT1。这是一种折衷的安排,以便能够公开播出时间尺度;1971年后,BIH原子时间的线性转换意味着时间尺度更稳定,更容易在国际上同步。它继续接近UT1这一事实意味着,需要一个普遍时间来源的航海任务继续受到UTC公共广播的良好服务。

概念原子时的初始历元规定为1958年1月1日世界时0时,秒长定义为铯-133原子基态的两个超精细能级间在零磁场下跃迁辐射9192631770周所持续的时间。这是一种均匀的时间计量系统。由于世界时存在不均匀性和历书时的测定精度低,1967年起,原子时已取代历书时作为基本时间计量系统。原子时的秒长规定为国际单位制的时间单位,作为三大物理量的基本单位之一。原子时由原子钟的读数给出。国际计量局收集各国各实验室原子钟的比对和时号发播资料,进行综合处理,建立国际原子时。

由原子钟(见天文时计)导出的时间叫原子时,简称AT。它以物质内部原子运动的特征为依据。

原子时计量的基本单位是原子时秒。它的定义是:铯原子基态的两个超精细能级间在零磁场下跃迁辐射9,192,631,770周所持续的时间。1967年第十三届国际计量大会决定,把在海平面实现的上述原子时秒,规定为国际单位制中的时间单位。

原子时起点定在1958年1月1日0时0分0秒(UT),即规定在这一瞬间原子时时刻与世界时刻重合。但事后发现,在该瞬间原子时与世界时的时刻之差为00039秒。这一差值就作为历史事实而保留下来。在确定原子时起点之后,由于地球自转速度不均匀,世界时与原子时之间的时差便逐年积累。

根据原子时秒的定义,任何原子钟在确定起始历元后,都可以提供原子时。由各实验室用足够精确的铯原子钟导出的原子时称为地方原子时。全世界大约有20多个国家的不同实验室分别建立了各自独立的地方原子时。国际时间局比较、综合世界各地原子钟数据,最后确定的原子时,称为国际原子时,简称TAI。TAI的起点是这样规定的:取1958年1月1日0时0分0秒UT的瞬间作为同年同月同日0时0分0秒TAIs。

原子时

原理根据量子物理学的基本原理,原子是按照不同电子排列顺序的能量差,也就是围绕在原子核周围不同电子层的能量差,来吸收或释放电磁能量的。这里电磁能量是不连续的。当原子从一个能量态跃迁至低的能量态时,它便会释放电磁波。这种电磁波特征频率是不连续的,这也就是人们所说的共振频率。同一种原子的共振频率是一定的。

30年代,[1]拉比和他的学生们在哥伦比亚大学的实验室里研究原子和原子核的基本特性。也就是在这里,他们在依靠这种原子计时器来制造时钟方面迈出了有价值的第一步。在其研究过程中,拉比发明了一种被称为磁共振的技术。依靠这项技术,他便能够测量出原子的自然共振频率。为此他还获得了1944年诺贝尔奖。同年,他还首先提出要讨论讨论这样一个想法(他的学生这样说道),也就是这些共振频率的准确性如此之高,完全可以用来制作高精度的时钟。他还特别提出要利用所谓原子的超精细跃迁的频率。这种超精细跃迁指的是随原子核和电子之间不同的磁作用变化而引起的两种具有细微能量差别的状态之间的跃迁。在这种时钟里,一束处于某一特定超精细状态的原子束穿过一个振荡电磁场。当原子的超精细跃迁频率越接近磁场的振荡频率,原子从磁场中吸收的能量就越多,从而产生从原始超精细状态到另一状态的跃迁。通过一个反馈回路,人们能够调整振荡场的频率直到所有的原子完成了跃迁。原子钟就是利用振荡场的频率即保持与原子的共振频率完全相同的频率作为产生时间脉冲的节拍器。

原子时原理应用人们日常生活需要知道准确的时间,生产、科研上更是如此。人们平时所用的钟表,精度高的大约每年会有1分钟的误差,这对日常生活是没有影响的,但在要求很高的生产、科研中就需要更准确的计时工具。目前世界上最准确的计时工具就是原子钟,它是20世纪50年代出现的。原子钟是利用原子吸收或释放能量时发出的电磁波来计时的。由于这种电磁波非常稳定,再加上利用一系列精密的仪器进行控制,原子钟的计时就可以非常准确了。用在原子钟里的元素有氢、铯(sè)、铷(rú)等。原子时是更为客观更为恒定的时间基准,原子时的秒长更容易测定和应用,不需要进行长期的天文观测,并且其稳定性和准确度都十分高,在二十世纪七十年代,已经能达到10-12的准确度,相当于30万年不差一秒。现在,原子钟的精度已经能达到10-14,相当于3000万年不差一秒。这为天文、航海、宇宙航行提供了强有力的保障。

赞(0)
版权声明:本文内容/及图片/由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭/侵权/违法违规的内容, 请发送邮件至 yangcongsoon@qq.com 举报,一经查实,本站将立刻删除。17攻略 » 原子时 当两种原子在一起时会发生什么