欢迎光临

卡拉比猜想 丘成桐是重庆哪里人

丘成桐不是重庆人而是广东人

丘成桐,原籍广东省梅州市蕉岭县 ,1949年出生于广东汕头,同年随父母移居香港,美籍华人,国际知名数学家,菲尔兹奖首位华人得主 ,美国国家科学院院士、美国艺术与科学院院士、台湾中央研究院院士 、中国科学院外籍院士 。

现任香港中文大学博文讲座教授兼数学科学研究所所长 、哈佛大学讲座教授 、清华大学丘成桐数学科学中心主任 。

1969年毕业于香港中文大学崇基学院数学系 ;1971年获得加州大学伯克利分校数学博士(师从陈省身);1974-1987年任斯坦福大学、普林斯顿高等研究院、加州大学圣地亚哥分校数学教授 ;1987年起任哈佛大学讲座教授;1993年被选为美国国家科学院院士 ;1994年成为台湾中央研究院院士和中国科学院外籍院士,同年出任香港中文大学数学科学研究所所长;2003年出任香港中文大学博文讲座教授;2013年起任哈佛大学物理系教授 。

丘成桐囊括了维布伦几何奖(1981)、菲尔兹奖(1982)、麦克阿瑟奖(1985) 、克拉福德奖(1994)、美国国家科学奖(1997)、沃尔夫数学奖(2010) 、马塞尔·格罗斯曼奖(2018)等奖项 。

特别是在1982年度荣获最高数学奖菲尔兹奖,是第一位获得这项被称为数学界的诺贝尔奖的华人,也是继陈省身后第二位获得沃尔夫数学奖的华人。

丘成桐证明了卡拉比猜想、正质量猜想等,是几何分析学科的奠基人 ,以他的名字命名的卡拉比-丘流形,是物理学中弦理论的基本概念,对微分几何和数学物理的发展做出了重要贡献。

卡拉比猜想

中文名卡拉比猜想

外文名Calabi-Yau

作者卡拉比

关键词卡拉比、丘成桐

发表日期

背景20世纪50年代是几何与拓扑学最辉煌的时代。一批年轻的数学家证明了一系列伟大的数学定理,开天辟地,创造了一个崭新的时代。他们与他们的定理一起,熠熠生辉,照亮了整个数学的历史。

卡拉比(Calabi)猜想在数学界的期盼中,等待着它真正的王者到来,这一等就是21年。

1941年的霍奇(Hodge)理论刚刚由魏尔(Weyl)和小平邦彥(Kodaira)整理完成。1945年陈省身引进的陈示性类由希策布鲁赫(Hirzebruch)发扬光大,证明了拓扑中的符号差定理与代数几何中的Hirzebruch-Riemann-Roch定理。工程师出身的博特(Bott)证明了他不朽的同伦群周期性定理。这些结果很快激发出了Atiyah-Singer指标定理。塞尔(Serre)用勒雷(Leray)的谱序列计算了代数拓扑中球面的同伦群,用层论写下了代数几何名篇GAGA,将复分析系统地引入代数几何。Kodaira证明了他著名的嵌入定理,发展了复流形的形变理论。稍后,米尔诺(Milnor)发现了七维怪球,纳什(Nash)证明了黎曼(Riemann)流形的嵌入定理。这些伟大的数学家与他们的定理,如繁星闪耀在天空,令人目不暇给。

1954年的国际数学家大会,菲尔兹(Fields)奖的获奖者是小平邦彥(Kodaira)和塞尔(Serre),他们的主要获奖工作都是将复分析、微分几何与代数几何完美地结合在一起。正如魏尔(Weyl)在他的颁奖词中所说:他们的成就远远超越了他年轻时的梦想,他们的成就代表着数学一个新时代的到来。

也是在这届数学家大会上,31岁的意大利裔数学家卡拉比,在会议的邀请报告中用一页纸写下了他著名的猜想。

提出31岁的意大利裔数学家卡拉比,在会议的邀请报告中用一页纸写下了他著名的猜想:令M为紧致的卡勒(Kahler)流形,那么对其第一陈类中的任何一个(1,1)形式R,都存在唯一的一个卡勒度量,其Ricci形式恰好是R。卡拉比还粗略地描述了一个他的猜想的证明方案,并证明了,如果解存在,那必是唯一的。

但3年后,在1957年的一篇关于Calabi-Yau流形的几何结构的文章中,他意识到这个证明根本行不通。这里需要求解一个极为艰深而复杂的偏微分方程,叫作复的Monge-Ampere方程。他去请教20世纪最伟大的数学家之一的魏尔(Andre Weil)教授。魏尔说:当时还没有足够的数学理论来攻克它。

众所周知,庞加莱(Poincare)著名的单值化定理告诉我们,一维复流形的万有覆盖只有简单的三种,球面、复平面和单位圆盘。如何将单值化定理推广到高维流形,这个问题几乎主导了现代几何与拓扑的发展。而即使从复一维到复二维流形,问题的复杂性已经远超想象,被数学家称作是从天堂到了地狱。或者说是上帝创造了黎曼面,简单美丽而又丰富多彩,是魔鬼制造了复曲面,内容复杂,令人眼花缭乱,头晕目眩。卡拉比猜想可以认为是单值化定理在高维不可思议的大胆推广,竟然给出了高维复流形中难得一见的一般规律。特别的是它在复卡勒流形的第一陈类大于零、等于零和小于零三个情形,指出了Kahler-Einstein度量的存在性,即此度量的第一陈形式等于其卡勒形式。这恰好对应于黎曼面三种单值化的推广。

要知道,当时人们知道的爱因斯坦流形的例子都是局部齐性的,甚至都不知道复投影空间中的超曲面,如K3曲面上,是否有爱因斯坦度量。在这样一种情况下,卡拉比竟然做出如此大胆的猜测,可见其胆识过人,也难怪此后多数几何学家都怀疑此猜想的正确性,许多人都在努力寻找反例,而不是证明它。正如庞加莱的单值化定理,霍奇定理需要经过数年,乃至数十年努力才得到完美的证明一样,卡拉比猜想也在数学界的期盼中,等待着它真正的王者到来,这一等就是21年。

证明

丘成桐与卡拉比先生

1957年,5岁的丘成桐正在世界的另一端过着清贫的生活,那时的香港几乎没有人知道什么是微分几何。14岁时父亲的去世,更令他饱尝人间冷暖,也造就了他不屈不挠的性格。11年后他进入香港中文大学,1969年,大学三年级的他便负笈求学来到伯克利(Berkeley)。那一年,著名的几何学家伍鸿熙教授在给另一位著名几何学家格林(Greene)的信中,预言这个19岁的年轻人将会改变微分几何的面貌。很难知道伍鸿熙教授如何看出了一个19岁年轻人不同寻常的王者之气。

读研究生的第一年,丘成桐初试身手,便解决了微分几何中一个有关负曲率流形基本群的结构问题,事后他才知道这就是微分几何中著名的沃尔夫猜想。这一点颇像米尔诺(Milnor)把扭结理论里的猜想当成家庭作业完成一样。当遇到卡拉比猜想后,他像是见到了美丽的天使,一见钟情。此后童话般的故事人人皆知,其中的痛苦与快乐也只有丘成桐自己才能体会。后来他告诉所有人,他成功的诀窍是用苦功而非天才,他曾尝试过近五千个实验函数,来发展流形上梯度估计的技巧。所以我们知道,一只苹果掉到头上,令牛顿豁然开朗地发明了微积分,那只是个传说。

为了解决卡拉比猜想,他需要系统地创建和发展流形上的非线性分析,特别是Monge-Ampere方程的理论、方法与技巧。他先与郑绍远合作,用实的Monge-Ampere方程解决了著名的闵可夫斯基(Minkowski)猜想和闵可夫斯基时空中的伯恩斯坦(Bernstein)问题,此后再将他自己发展的梯度估计技术发挥到极致,终于在1975年完全解决了卡拉比猜想。

赞(0)
版权声明:本文内容/及图片/由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭/侵权/违法违规的内容, 请发送邮件至 yangcongsoon@qq.com 举报,一经查实,本站将立刻删除。17攻略 » 卡拉比猜想 丘成桐是重庆哪里人